If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+62x-72=0
a = 15; b = 62; c = -72;
Δ = b2-4ac
Δ = 622-4·15·(-72)
Δ = 8164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8164}=\sqrt{4*2041}=\sqrt{4}*\sqrt{2041}=2\sqrt{2041}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{2041}}{2*15}=\frac{-62-2\sqrt{2041}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{2041}}{2*15}=\frac{-62+2\sqrt{2041}}{30} $
| 14a+2=0 | | 10a=130 | | W=1/3w+18 | | 2-8x=17-5x | | 25-7a=24-4a | | 3^x2=27x/9 | | (3x+5)(3x+5)-(4x-3)(4x-3)=0 | | 4(x−3)−3(2x+1)=18 | | 5x-3=5-3(6-2x) | | 5x=×575 | | 5x=×75 | | 7(21/11)+2(x+2)=20-(2(21/11-5) | | t=0.75(t+2.5) | | m/3=16 | | -16x^2+96x+15=0 | | 2x^2-117x+324=0 | | c+1=2c−10 | | (2n+2)^2=-12 | | (2x-1)^2-(4x^2-1)=0 | | 18=6a-3 | | 11/2b41/2=11/2+3/4b | | 4n^2+4=-18 | | 4n^2+4=18 | | 2k=3k+45k | | 11x-6x+174=11x+96 | | 1.5x=9.15 | | 50m+48750=51000+200m | | 4/1=12/y | | 3^x-1=50 | | x(5000-94/0.094)=188 | | 555=105t+115(5–t) | | 3x-35+4x-50=90 |